Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 364(8)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28333211

RESUMO

As glutathione (GSH) plays an essential role in growth and symbiotic capacity of rhizobia, a glutathione synthetase (gshB) mutant of Rhizobium leguminosarum biovar viciae 3841 (Rlv3841) was characterised. It fails to efficiently utilise various compounds as a sole carbon source, including glucose, succinate, glutamine and histidine, and shows 60%-69% reduction in uptake rates of glucose, succinate and the non-metabolisable substrate α-amino isobutyric acid. The defect in glucose uptake can be overcome by addition of exogenous GSH, indicating GSH, but not its bacterial synthesis, is required for efficient transport. GSH is not involved in the regulation of the activity of Rlv3841's transporters via the global regulator of transport, PtsNTR. Although lack of GSH reduces transcription of the branched amino acid transporter, this was not the case for all uptake transport systems, for example, the amino acid permease. This suggests GSH alters activity and/or assembly of transport systems by an unknown mechanism. In interaction with plants, the gshB mutant is not only severely impaired in rhizosphere colonisation, but also shows a 50% reduction in dry weight of plants and nitrogen-fixation ability. This reveals that changes in GSH metabolism affect the bacterial-plant interactions required for symbiosis.


Assuntos
Regulação Bacteriana da Expressão Gênica , Glutationa/metabolismo , Nodulação/genética , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/metabolismo , Transporte Biológico , Carbono/metabolismo , Glucose/metabolismo , Glutationa/biossíntese , Glutationa Sintase/genética , Mutação , Fixação de Nitrogênio/genética , Fixação de Nitrogênio/fisiologia , Pisum sativum/microbiologia , Nodulação/fisiologia , Raízes de Plantas/microbiologia , Ácido Succínico/metabolismo , Simbiose
2.
Plant Physiol ; 173(3): 1594-1605, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28108698

RESUMO

Plants modify the polyunsaturated fatty acid content of their membrane and storage lipids in order to adapt to changes in temperature. In developing seeds, this response is largely controlled by the activities of the microsomal ω-6 and ω-3 fatty acid desaturases, FAD2 and FAD3. Although temperature regulation of desaturation has been studied at the molecular and biochemical levels, the genetic control of this trait is poorly understood. Here, we have characterized the response of Arabidopsis (Arabidopsis thaliana) seed lipids to variation in ambient temperature and found that heat inhibits both ω-6 and ω-3 desaturation in phosphatidylcholine, leading to a proportional change in triacylglycerol composition. Analysis of the 19 parental accessions of the multiparent advanced generation intercross (MAGIC) population showed that significant natural variation exists in the temperature responsiveness of ω-6 desaturation. A combination of quantitative trait locus (QTL) analysis and genome-wide association studies (GWAS) using the MAGIC population suggests that ω-6 desaturation is largely controlled by cis-acting sequence variants in the FAD2 5' untranslated region intron that determine the expression level of the gene. However, the temperature responsiveness of ω-6 desaturation is controlled by a separate QTL on chromosome 2. The identity of this locus is unknown, but genome-wide association studies identified potentially causal sequence variants within ∼40 genes in an ∼450-kb region of the QTL.


Assuntos
Arabidopsis/genética , Ácidos Graxos Ômega-3/biossíntese , Ácidos Graxos Ômega-6/biossíntese , Estudo de Associação Genômica Ampla/métodos , Locos de Características Quantitativas/genética , Temperatura , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Regulação da Expressão Gênica de Plantas , Lipídeos/análise , Fosfatidilcolinas/análise , Fosfatidilcolinas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/enzimologia , Sementes/genética , Sementes/metabolismo , Triglicerídeos/análise , Triglicerídeos/metabolismo
3.
AIMS Microbiol ; 3(3): 435-466, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31294170

RESUMO

Common bean is one of the most important crops for human feed, and the most important legume for direct consumption by millions of people, especially in developing countries. It is a promiscuous host legume in terms of nodulation, able to associate with a broad and diverse range of rhizobia, although the competitiveness for nodulation and the nitrogen fixation capacity of most of these strains is generally low. As a result, common bean is very inefficient for symbiotic nitrogen fixation, and nitrogen has to be supplied with chemical fertilizers. In the last years, symbiotic nitrogen fixation has received increasing attention as a sustainable alternative to nitrogen fertilizers, and also as a more economic and available one in poor countries. Therefore, optimization of nitrogen fixation of bean-rhizobia symbioses and selection of efficient rhizobial strains should be a priority, which begins with the study of the natural diversity of the symbioses and the rhizobial populations associated. Natural rhizobia biodiversity that nodulates common bean may be a source of adaptive alleles acting through phenotypic plasticity. Crosses between accessions differing for nitrogen fixation may combine alleles that never meet in nature. Another way to discover adaptive genes is to use association genetics to identify loci that common bean plants use for enhanced biological nitrogen fixation and, in consequence, for marker assisted selection for genetic improvement of symbiotic nitrogen fixation. In this review, rhizobial biodiversity resources will be discussed, together with what is known about the loci that underlie such genetic variation, and the potential candidate genes that may influence the symbiosis' fitness benefits, thus achieving an optimal nitrogen fixation capacity in order to help reduce reliance on nitrogen fertilizers in common bean.

4.
Plant Physiol ; 172(1): 154-62, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27462083

RESUMO

Omega-7 monounsaturated fatty acids (ω-7s) are specifically enriched in the aleurone of Arabidopsis (Arabidopsis thaliana) seeds. We found significant natural variation in seed ω-7 content and used a Multiparent Advanced Generation Inter-Cross population to fine-map a major quantitative trait loci to a region containing ACYL-ACYL CARRIER PROTEIN DESATURASE1 (AAD1) and AAD3 We found that AAD3 expression is localized to the aleurone where mutants show an approximately 50% reduction in ω-7 content. By contrast, AAD1 is localized to the embryo where mutants show a small reduction in ω-9 content. Enzymatic analysis has previously shown that AAD family members possess both stearoyl- and palmitoyl-ACP Δ(9) desaturase activity, including the predominant isoform SUPPRESSOR OF SALICYLIC ACID INSENSITIVE2. However, aad3 ssi2 aleurone contained the same amount of ω-7s as aad3 Within the AAD family, AAD3 shares the highest degree of sequence similarity with AAD2 and AAD4. Mutant analysis showed that AAD2 also contributes to ω-7 production in the aleurone, and aad3 aad2 exhibits an approximately 85% reduction in ω-7s Mutant analysis also showed that FATTY ACID ELONGASE1 is required for the production of very long chain ω-7s in the aleurone. Together, these data provide genetic evidence that the ω-7 pathway proceeds via Δ(9) desaturation of palmitoyl-ACP followed by elongation of the product. Interestingly, significant variation was also identified in the ω-7 content of Brassica napus aleurone, with the highest level detected being approximately 47% of total fatty acids.


Assuntos
Proteína de Transporte de Acila/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/metabolismo , Sementes/metabolismo , Proteína de Transporte de Acila/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Ácidos Graxos Dessaturases/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Isoenzimas/genética , Isoenzimas/metabolismo , Mutação , Plantas Geneticamente Modificadas , Locos de Características Quantitativas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...